skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bland-Hawthorn, Joss"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present Cryoscope, a new 50 deg2field-of-view, 1.2 m aperture,Kdarksurvey telescope to be located at Dome C, Antarctica. Cryoscope has an innovative optical–thermal design wherein the entire telescope is cryogenically cooled. Cryoscope also explores new detector technology to cost-effectively tile the full focal plane. Leveraging the dark Antarctic sky and minimizing telescope thermal emission, Cryoscope achieves unprecedented deep, wide, fast, and red observations, matching and exceeding volumetric survey speeds from the Ultraviolet Explorer, Vera Rubin Observatory, Nancy Grace Roman Space Telescope, SPHEREx, and NEO Surveyor. By providing coverage beyond wavelengths of 2μm, we aim to create the most comprehensive dynamic movie of the most obscured reaches of the Universe. Cryoscope will be a dedicated discovery engine for electromagnetic emission from coalescing compact binaries, Earth-like exoplanets orbiting cold stars, and multiple facets of time-domain, stellar, and solar system science. In this paper, we describe the scientific drivers and technical innovations for this new discovery engine operating in theKdarkpassband, why we choose to deploy it in Antarctica, and the status of a fifth-scale prototype designed as a Pathfinder to retire technological risks prior to full-scale implementation. We plan to deploy the Cryoscope Pathfinder to Dome C in 2026 December and the full-scale telescope by 2030. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars. 
    more » « less
  3. ABSTRACT K2 was a community-driven NASA mission where all targets were proposed through guest observer programmes. Here we provide an overview of one of the largest of these endeavours, the K2 Galactic Archaeology Programme (K2GAP), with about 25 per cent of the observed targets being allocated to this programme. K2GAP provides asteroseismic parameters for about 23 000 giant stars across the Galaxy, which together with spectroscopic stellar parameters can give age and masses of stars. We discuss in detail the target selection procedure and provide a python program that implements the selection function (github.com/sanjibs/k2gap). Broadly speaking, the targets were selected on 2MASS colour J − Ks > 0.5, with finely tuned adjustments for each campaign. We discuss the detection completeness of the asteroseismic parameters νmax and Δν. About 14 per cent of giants were found to miss νmax detections and it was difficult to detect Δν for RC stars. Making use of the selection function, we compare the observed distribution of asteroseismic masses to theoretical predictions. The median asteroseismic mass is higher by about 4 per cent compared to predictions. We provide a selection-function-matched mock catalogue of stars based on a synthetic model of the Galaxy for the community to use in subsequent analyses of the K2GAP data set (physics.usyd.edu.au/k2gap/download/). 
    more » « less
  4. ABSTRACT Milky Way globular clusters (GCs) display chemical enrichment in a phenomenon called multiple stellar populations (MSPs). While the enrichment mechanism is not fully understood, there is a correlation between a cluster’s mass and the fraction of enriched stars found therein. However, present-day GC masses are often smaller than their masses at the time of formation due to dynamical mass-loss. In this work, we explore the relationship between mass and MSPs using the stellar stream 300S. We present the chemical abundances of eight red giant branch member stars in 300S with high-resolution spectroscopy from Magellan/MIKE. We identify one enriched star characteristic of MSPs and no detectable metallicity dispersion, confirming that the progenitor of 300S was a GC. The fraction of enriched stars (12.5 per cent) observed in our 300S stars is less than the 50 per cent of stars found enriched in Milky Way GCs of comparable present-day mass (∼104.5 $$\mathrm{\, {\rm M}_{\odot }}$$). We calculate the mass of 300S’s progenitor and compare it to the initial masses of intact GCs, finding that 300S aligns well with the trend between the system mass at formation and enrichment. 300S’s progenitor may straddle the critical mass threshold for the formation of MSPs and can therefore serve as a benchmark for the stellar enrichment process. Additionally, we identify a CH star, with high abundances of s-process elements, probably accreted from a binary companion. The rarity of such binaries in intact GCs may imply stellar streams permit the survival of binaries that would otherwise be disrupted. 
    more » « less
  5. Abstract Current methods of identifying the ionizing source of nebular emission in galaxies are well defined for the era of single-fiber spectroscopy, but still struggle to differentiate the complex and overlapping ionization sources in some galaxies. With the advent of integral field spectroscopy, the limits of these previous classification schemes are more apparent. We propose a new method for distinguishing the ionizing source in resolved galaxy spectra by use of a multidimensional diagnostic diagram that compares emission-line ratios with velocity dispersion on a spaxel-by-spaxel basis within a galaxy. This new method is tested using the Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph Galaxy Survey (SAMI) Data Release 3 (DR3), which contains 3068 galaxies atz< 0.12. Our results are released as ionization maps available alongside the SAMI DR3 public data. Our method accounts for a more diverse range of ionization sources than the standard suite of emission-line diagnostics; we find 1433 galaxies with a significant contribution from non-star-forming ionization using our improved method as compared to 316 galaxies identified using only emission-line ratio diagnostics. Within these galaxies, we further identify 886 galaxies hosting unique signatures inconsistent with standard ionization by Hiiregions, active galactic nuclei, or shocks. These galaxies span a wide range of masses and morphological types and comprise a sizable portion of the galaxies used in our sample. With our revised method, we show that emission-line diagnostics alone do not adequately differentiate the multiple ways to ionize gas within a galaxy. 
    more » « less
  6. Abstract We present the first detailed comparison of populations of dwarf galaxy stellar streams in cosmological simulations and the Milky Way. In particular, we compare streams identified around 13 Milky Way analogs in the FIRE-2 simulations to streams observed by the Southern Stellar Stream Spectroscopic Survey ( S 5 ). For an accurate comparison, we produce mock Dark Energy Survey (DES) observations of the FIRE streams and estimate the detectability of their tidal tails and progenitors. The number and stellar mass distributions of detectable stellar streams is consistent between observations and simulations. However, there are discrepancies in the distributions of pericenters and apocenters, with the detectable FIRE streams, on average, forming at larger pericenters (out to >110 kpc) and surviving only at larger apocenters (≳40 kpc) than those observed in the Milky Way. We find that the population of high-stellar-mass dwarf galaxy streams in the Milky Way is incomplete. Interestingly, a large fraction of the FIRE streams would only be detected as intact satellites in DES-like observations, since their tidal tails have too low surface brightness to be detectable. We thus predict a population of yet-undetected tidal tails around Milky Way satellites, as well as a population of fully undetected low-surface-brightness stellar streams, and estimate their detectability with the Rubin Observatory. Finally, we discuss the causes and implications of the discrepancies between the stream populations in FIRE and the Milky Way, and explore future avenues for tests of satellite disruption in cosmological simulations. 
    more » « less
  7. Abstract We resolve the multiple images of the binary-lens microlensing event ASASSN-22av using the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The light curves show weak binary-lens perturbations, complicating the analysis, but the joint modeling with the VLTI data breaks several degeneracies, arriving at a strongly favored solution. Thanks to precise measurements of the angular Einstein radiusθE= 0.724 ± 0.002 mas and microlens parallax, we determine that the lens system consists of two M dwarfs with masses ofM1= 0.258 ± 0.008MandM2= 0.130 ± 0.007M, a projected separation ofr= 6.83 ± 0.31 au, and a distance ofDL= 2.29 ± 0.08 kpc. The successful VLTI observations of ASASSN-22av open up a new path for studying intermediate-separation (i.e., a few astronomical units) stellar-mass binaries, including those containing dark compact objects such as neutron stars and stellar-mass black holes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. null (Ed.)
    ABSTRACT Until the recent advent of Gaia Data Release 2 (DR2) and deep multi-object spectroscopy, it has been difficult to obtain 6D phase space information for large numbers of stars beyond 4 kpc, in particular towards the Galactic Centre, where dust and crowding are significant. We combine line-of-sight velocities from the Abundances and Radial velocity Galactic Origins Survey (ARGOS) with proper motions from Gaia DR2 to obtain a sample of ∼7000 red clump stars with 3D velocities. We perform a large-scale stellar kinematics study of the Milky Way bulge to characterize the bulge velocity ellipsoids in 20 fields. The tilt of the major-axis of the velocity ellipsoid in the radial-longitudinal velocity plane, or vertex deviation, is characteristic of non-axisymmetric systems and a significant tilt is a robust indicator of non-axisymmetry or bar presence. We compare the observations to the predicted kinematics of an N-body boxy-bulge model formed from dynamical instabilities. In the model, the lv values are strongly correlated with the angle (α) between the bulge major-axis and the Sun-Galactic centre line of sight. We use a maximum likelihood method to obtain an independent measurement of α, from bulge stellar kinematics alone, performing a robust error analysis. The most likely value of α given our model is α = (29 ± 3)○, with an additional systematic uncertainty due to comparison with one specific model. In Baade’s window, the metal-rich stars display a larger vertex deviation (lv = −40○) than the metal-poor stars (lv = 10○) but we do not detect significant lv−metallicity trends in the other fields. 
    more » « less
  9. ABSTRACT We present SAMI-H i, a survey of the atomic hydrogen content of 296 galaxies with integral field spectroscopy available from the SAMI Galaxy Survey. The sample spans nearly 4 dex in stellar mass ($$M_\star = 10^{7.4}-10^{11.1}~ \rm M_\odot$$), redshift z < 0.06, and includes new Arecibo observations of 153 galaxies, for which we release catalogues and H i spectra. We use these data to compare the rotational velocities obtained from optical and radio observations and to show how systematic differences affect the slope and scatter of the stellar-mass and baryonic Tully–Fisher relations. Specifically, we show that $$\rm H\alpha$$ rotational velocities measured in the inner parts of galaxies (1.3 effective radii in this work) systematically underestimate H i global measurements, with H i/$$\rm H\alpha$$ velocity ratios that increase at low stellar masses, where rotation curves are typically still rising and $$\rm H\alpha$$ measurements do not reach their plateau. As a result, the $$\rm H\alpha$$ stellar mass Tully–Fisher relation is steeper (when M⋆ is the independent variable) and has larger scatter than its H i counterpart. Interestingly, we confirm the presence of a small fraction of low-mass outliers of the $$\rm H\alpha$$ relation that are not present when H i velocity widths are used and are not explained by ‘aperture effects’. These appear to be highly disturbed systems for which $$\rm H\alpha$$ widths do not provide a reliable estimate of the rotational velocity. Our analysis reaffirms the importance of taking into account differences in velocity definitions as well as tracers used when interpreting offsets from the Tully–Fisher relation, at both low and high redshifts and when comparing with simulations. 
    more » « less
  10. ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($$11.6\!\!-\!\!12.2\, \rm {Gyr}$$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 ($${\lesssim} \!12.6\, \rm {Gyr}$$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $$\Delta t\!\sim \!1.6\, \rm {Gyr}$$), with ∼4× higher stellar mass at all z ≳ 4 ($${\gtrsim} \!12.2\, \rm {Gyr}$$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $$\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population. 
    more » « less